Covid-19 usa estratégia similar à do HIV para infectar seres humanos
Segundo os autores, o novo coronavírus atua por um mecanismo semelhante ao do HIV, causador da Aids
Tamires Vitorio
Publicado em 5 de outubro de 2020 às 16h36.
Um estudo coordenado por pesquisadores da Universidade Estadual de Campinas (Unicamp) e divulgado na plataforma medRxiv traz novas evidências de que o vírus SARS-CoV-2 é capaz de infectar e de se replicar no interior de linfócitos, podendo levar essas células de defesa à morte e comprometer ao menos temporariamente o sistema imunológico.
Segundo os autores, o novo coronavírus atua por um mecanismo semelhante ao do HIV, causador da Aids. Os dois afetam um tipo de linfócito conhecido como T CD4, que é responsável por coordenar a chamada resposta imune adaptativa – auxiliando tanto os linfócitos B a produzirem anticorpos como os linfócitos T CD8 – responsáveis por reconhecer e matar células infectadas – a se proliferarem. Essa coordenação se dá por meio da liberação de moléculas sinalizadoras conhecidas como citocinas.
“Nossos resultados sugerem que, em alguns pacientes, o novo coronavírus pode causar um quadro de imunodeficiência aguda não apenas porque mata parte dos linfócitos T CD4, mas também porque prejudica a função dessas células. Isso faz com que os linfócitos T CD8 se proliferem menos e os linfócitos B produzam anticorpos com menor afinidade e duração. Seria um efeito semelhante ao do HIV, só que agudo”, explica à Agência FAPESP Alessandro Farias , chefe do Departamento de Genética, Evolução, Microbiologia e Imunologia do Instituto de Biologia (IB) da Unicamp, que coordenou a investigação ao lado do professor Marcelo Mori .
As conclusões do artigo, ainda em processo de revisão por pares, estão baseadas principalmente em experimentos com culturas primárias de linfócitos (isolados do sangue de voluntários não infectados e de pacientes com COVID-19) conduzidos no Laboratório de Estudos de Vírus Emergentes (Leve) do IB-Unicamp, com apoio da FAPESP.
Na primeira etapa da pesquisa, os pesquisadores incubaram células de doadores saudáveis com o SARS-CoV-2 e acompanharam o que acontecia nas 24 horas seguintes por meio de diferentes técnicas, como hibridização in situ, microscopia eletrônica de transmissão e RT-PCR (a mesma usada para diagnosticar a infecção na fase aguda).
“Fizemos esse ensaio apenas com linfócitos T CD4 e T CD8 por serem os tipos mais diminuídos nos pacientes com COVID-19 grave. As análises confirmaram a presença do novo coronavírus no interior de aproximadamente 40% dos T CD4, sendo que 10% dessas células morreram ao final do período de observação. Os linfócitos T CD8 não foram afetados”, conta Farias.
Os pesquisadores observaram ainda que a carga viral mais do que dobrou entre as medições feitas duas e 24 horas após o início do teste – sinal de que o vírus estava se replicando nas células em cultura.
O passo seguinte foi analisar com as mesmas ferramentas os linfócitos T CD4 isolados de pacientes diagnosticados com COVID-19 em busca de sinais do SARS-CoV-2. Nas pessoas que apresentavam quadros moderados da doença foram encontrados poucos linfócitos infectados e eles estavam produzindo, como era esperado, a citocina interferon-gama (IFN-γ) – importante para a resposta antiviral. Já nos pacientes graves, além de haver um número muito maior de linfócitos com o vírus, as células estavam produzindo no lugar da IFN-γ a interleucina-10 (IL-10), uma citocina com ação anti-inflamatória. Ou seja, nesses doentes com COVID-19 severa, os linfócitos T CD4 estavam sinalizando para o sistema imune a necessidade de frear o combate ao vírus.
Segundo Farias, isso explicaria por que muitas pessoas nessa condição apresentam alterações na resposta imune adaptativa (aquela que é específica para cada patógeno), como linfopenia (redução na concentração geral de linfócitos no sangue), exaustão de células T e produção comprometida de anticorpos.
“A produção de IL-10 desliga o sistema imune e permite ao vírus permanecer mais tempo no organismo. Por enquanto ainda não é possível saber o que é causa e o que é consequência, ou seja, se esses pacientes evoluíram para a forma grave porque tinham mais linfócitos T CD4 infectados ou o contrário. Mas há uma clara associação entre esses dois fatores”, afirma Farias.
Abrindo passagem
Vários estudos já publicados apontam a molécula ACE2 (enzima conversora de angiotensina 2, na sigla em inglês) como a principal porta de entrada para o SARS-CoV-2 na superfície das células humanas. No entanto, os linfócitos T CD4 sabidamente expressam uma quantidade muito pequena dessa enzima na superfície de sua membrana plasmática, que é recoberta pela proteína que dá nome à célula: a CD4.
Para desvendar a estratégia usada pelo novo coronavírus para entrar nesses linfócitos – que normalmente são refratários à infecção por vírus e bactérias – o grupo da Unicamp realizou dois novos testes com as amostras de doadores saudáveis. No primeiro, antes de colocar o vírus, foram acrescentados na cultura celular anticorpos capazes de neutralizar a proteína CD4. No segundo experimento, foram colocados anticorpos contra a ACE2.
“Nossa hipótese era de que o SARS-CoV-2 conseguiria entrar na célula usando apenas a CD4, mas quando neutralizamos também a ACE2 a infecção foi totalmente bloqueada. Isso mostra que, mesmo em pequena quantidade, a ACE2 é necessária para a invasão do linfócito”, diz Farias.
Ensaios de interação entre moléculas in vitro revelaram que a proteína de espícula do SARS-CoV-2, aquela que forma a coroa presente na superfície viral, é capaz de se ligar à CD4 do linfócito.
“Acreditamos que o vírus apresenta uma artimanha para entrar nessa célula. Ele usa a proteína CD4 apenas para ficar perto da membrana celular e conseguir localizar a ACE2, que então lhe dá passagem para o meio intracelular”, explica o pesquisador.
Na terceira e última etapa da pesquisa, feita em parceria com o professor da Universidade de São Paulo (USP) Helder Nakaya , os pesquisadores usaram técnicas de bioinformática para reanalisar dados de um estudo publicado por cientistas chineses em maio, na revista Nature Medicine, no qual foi feito o sequenciamento de leucócitos isolados da secreção pulmonar de pacientes com COVID-19 grave por uma técnica conhecida como single-cell sequencing.
“O algoritmo desenvolvido pelo grupo de Nakaya permitiu identificar o genoma viral também nos linfócitos que estavam no pulmão dos pacientes, trazendo um novo nível de evidência e ainda mais confiabilidade para os achados”, afirma Farias.
A pesquisa contou também com a colaboração de pesquisadores da Universidade Estadual Paulista (Unesp), do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), da Fundação Oswaldo Cruz (Fiocruz) e do Instituto D’Or de Pesquisa e Ensino (Idor). O apoio da FAPESP se deu por meio de diversos auxílios e bolsas ( 19/16116-4 , 19/06372-3 , 20/04583-4 , 13/08293-7 , 20/04579-7 , 15/15626-8 , 18/14933-2 , 20/04746-0 , 19/00098-7 , 20/04919-2 , 17/01184-9 , 19/17007-4 , 19/22398-2 , 19/05155-9 , 19/06459-1 , 19/04726-2 , 17/23920-9 , 16/24163-4 e 16/23328-0 ).
No momento, o grupo tenta detalhar ainda mais os efeitos causados pela entrada do SARS-CoV-2 no linfócito T CD4. O objetivo é encontrar formas de intervir nesse processo, o que poderia em tese ajudar a combater a infecção.
“Já temos linfócitos isolados de mais de 350 pacientes que pretendemos usar nos experimentos em laboratório e também vamos fazer testes com camundongos geneticamente modificados para expressar a ACE2 humana. Uma das ideias é avaliar o efeito de moléculas capazes de inibir a interação entre a proteína de espícula do vírus e a CD4”, adianta o pesquisador.